Skip to main content

Five Billion Years of Solitude: Looking for Longevity [Excerpt]

In this excerpt from Five Billion Years of Solitude author Lee Billings chronicles the pioneering scientists who have led the hunt for extraterrestrial intelligence in their quest to answer the haunting question: Is humanity alone in the universe?

Reprinted from Five Billion Years of Solitude: The Search for Life among the Stars, by Lee Billings. With permission of Current, a member of Penguin Group (USA), LLC, A Penguin Random House Company. Copyright © Lee Billings, 2013.

On a hillside near Santa Cruz, California, a split-level ranch house sat in a stand of coast redwoods, the same color as the trees. Three small climate-controlled greenhouses nestled alongside the house next to a diminutive citrus grove, and a satellite dish was turned to the heavens from the manicured back lawn. Sunlight filtered into the living room through a cobalt stained-glass window, splashing oceanic shades across an old man perched on a plush couch. Frank Drake looked blue. He leaned back, adjusted his large bifocal glasses, folded his hands over his belly, and assessed the fallen fortunes of his chosen scientific field: SETI, the search for extraterrestrial intelligence.

“Things have slowed down, and we’re in bad shape in several ways,” Drake rumbled. “The money simply isn’t there these days. And we’re all getting old. A lot of young people come up and say they want to be a part of this, but then they discover there are no jobs. No company is hiring anyone to search for messages from aliens. Most people don’t seem to think there’s much benefit to it. The lack of interest is, I think, because most people don’t realize what even a simple detection would really mean. How much would it be worth to find out we’re not alone?” He shook his head, incredulous, and sunk deeper in the couch. Besides a few extra wrinkles and pounds, at eighty-one years old Drake was scarcely distinguishable from the young man who more than half a century earlier conducted the first modern SETI search. In 1959, Drake was an astronomer at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. He was only twenty-nine then, lean and hungry, yet he already possessed the calm self-assurance and silver hair of an elder statesman. At work one day, Drake began to wonder just what the site’s newly built 85‑foot- wide radio dish was capable of. He performed some back‑of‑the- envelope calculations based on the dish’s sensitivity and transmitting power, then probably double-checked them with a growing sense of glee. Drake’s figuring showed that if a twin of the 85‑footer existed on a planet orbiting a star only a dozen light-years away, it could transmit a signal that the dish in Green Bank could readily receive. All that was needed to shatter Earth’s cosmic loneliness was for the receiving radio telescope to be pointed at the right part of the sky, at the right time, listening at the right radio frequency.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


“That was true then, and it’s true today,” Drake told me. “Right now there could well be messages from the stars flying right through this room. Through you and me. And if we had the right receiver set up properly, we could detect them. I still get chills thinking about it.” It didn’t take long for Drake to discuss the wild prospect with his superiors at NRAO. They granted him a small budget to conduct a simple search. During the spring of 1960, Drake periodically pointed the 85‑footer at two nearby Sun-like stars, Tau Ceti and Epsilon Eridani, to listen for alien civilizations that might be transmitting radio signals toward Earth. Drake called the effort “Project Ozma,” after the princess who ruled over the imaginary Land of Oz in Frank Baum’s popular series of children’s books. “Like Baum, I, too, was dreaming of a land far away, peopled by strange and exotic beings,” he would later write. Project Ozma recorded little more than interstellar static, but still inspired a generation of scientists and engineers to begin seriously considering how to discover and communicate with technological civilizations that might exist around other stars. Over the years, astronomers used radio telescopes around the world to conduct hundreds of searches, looking at thousands of stars on millions of narrowband radio frequencies. But not one delivered unassailable evidence of life, intelligence, or technology beyond our planet. The silence of the universe was unbroken. And so for more than fifty years Drake and his disciples played the roles of not only scientists but also salespeople. For the entirety of the discipline’s existence, SETI groups had been searching nearly as ardently for sources of funding as they had for signals from extraterrestrials.

Early on, governments were quite interested—SETI was briefly one of the scientific arenas in which the United States and the Soviet Union grappled during the Cold War. What better propaganda victory could there be than to act as humanity’s ambassador to another cosmic civilization? What invaluable knowledge might be gained—and exploited— from communication between the stars? In 1971, a prestigious NASA commission concluded that a full-bore search for alien radio transmissions from stars within a thousand light-years of Earth would require an array of giant radio telescopes with a total collecting area of between 3 and 10 square kilometers, built at a cost of about $10 billion. Politicians and taxpayers balked at the price tag, and SETI began its long descent from political favor. The trend of null results stretched out over decades, and already scarce and fickle federal funding for American SETI efforts progressively dwindled. A glimmer of hope emerged in 1992, when NASA launched an ambitious new SETI program, but congressional backlash shuttered the project the following year. Since 1993, not a single federal dollar had directly sponsored the search for radio messages from the stars. Drake and a group of his disciples had suspected what was coming, so in 1984 they formed a nonprofit research organization, the SETI Institute, to more easily solicit financial support from both the public and private sectors. Headquartered in Mountain View, California, the SETI Institute began to thrive in the mid-1990s through a combination of research grants and private donations from starry-eyed and newly wealthy Silicon Valley technologists. Drake served as the Institute’s president from its founding until 2000, before transitioning into an active retirement a couple of years after the turn of the millennium.

By 2003, the Institute had secured $25 million in funding from Paul Allen, the billionaire cofounder of Microsoft, to build an innovative new instrument, the Allen Telescope Array (ATA), in a bowl- shaped desert valley some 185 miles north of San Francisco. Rather than construct a smaller number of gigantic (and gigantically expensive) dishes, the institute would save money by building larger numbers of smaller dishes. Drake had spearheaded much of the ATA’s design. Three hundred fifty 6‑meter dishes would act together as one extremely sensitive radio telescope, monitoring an area of sky nearly five times larger than the full Moon on a wide range of frequencies. Allen’s millions, along with $25 million more from other sources, were sufficient to build the ATA’s first forty-two dishes, which were completed in 2007. Significant funds to operate the fledgling ATA came from California state funding and federal research grants to the Radio Astronomy Laboratory at the University of California, Berkeley, which jointly ran the ATA with the Institute. Though only partially completed, the ATA still functioned well enough to support a SETI effort as well as a significant amount of unrelated radio astronomy research. It operated on an annual budget of approximately $2. 5 million— at least until 2011, when funding shortfalls forced the entire facility into hibernation.

As I spoke with Drake in his home in June 2011, weeds were already growing up around the idle dishes at the shuttered ATA. Only a skeleton crew of four Institute employees remained attached to the facility, merely to ensure it wouldn’t fall into irreparable disarray. The ATA would not restart operations until December, buoyed by a brief flurry of small donations. The money raised was sufficient to fund only another few months of operations. The Institute was seeking a partnership with the U.S. Air Force, which later purchased time on the ATA to monitor “space junk”—cast-off rocket stages, metal bolts, and other debris that can strike and damage spacecraft. But that funding, too, proved only temporary, and time spent surveying space junk was time sucked away from the ATA’s SETI-centric goals. Unless more wealthy patrons swooped in with heavyweight donations, the ATA had very little hope of reaching its original target of 350 dishes—and during the long recession after the 2008 turmoil in the global financial system, potential donors were proving at least as elusive as any broadcasting aliens. Drake’s greatest dream seemed to be collapsing.

Aside from political and economic difficulties, there was another factor in SETI’s decline that was at once more scientific and particularly ironic: the rise of exoplanetology, a field devoted to the discovery and study of exoplanets, planets orbiting stars other than our Sun. Beginning in the early 1990s, as radio telescopes intermittently swept the skies for messages from extraterrestrials, a revolution occurred in astronomy. Observers using state‑of‑the-art equipment began finding exoplanets with clockwork regularity. The first worlds discovered were “hot Jupiters,” bloated and massive gas-giant worlds orbiting inhospitably close to their stars. But as planet-hunting techniques grew more sophisticated, the pace of discovery quickened, and ever-smaller, more life-friendly worlds began to turn up. Twelve exoplanets were discovered in 2001, all of which were hot Jupiters. Twenty-eight were found in 2004, including several as small as Neptune. The year 2010 saw the discovery of more than a hundred worlds, a handful of which were scarcely larger than Earth. By early 2013, a single NASA mission, the Kepler Space Telescope, had discovered more than 2,700 likely exoplanets.

A small fraction of Kepler’s finds were the same size as or smaller than Earth and orbited in regions around stars where life as we know it could conceivably exist. Emboldened, astronomers earnestly discussed building huge space telescopes to seek signs of life on any habitable worlds around nearby stars.

When the ATA briefly came back online in December of 2011, it began to survey those promising Kepler candidates for the radio chatter of any talkative aliens who might live there. No signals were detected before the ATA was sent back into hibernation, starved once again for money. SETI’s half century of null results could not be further from the ongoing exoplanet boom, where sensational discoveries could lead to media fame, academic stardom, and plentiful funding for researchers and institutions. For those interested in extraterrestrial life, exoplanetology, not SETI, was the place to be. As the search for Earth-like planets came to a boil, SETI was being frozen out of the scientific world.

When I asked Drake if we were witnessing the end of SETI, his blue eyes twinkled behind a knowing Cheshire Cat grin. “Oh no, not at all. This, I think, has been just the beginning. People presume we’ve been somehow monitoring the entire sky at all frequencies, all the time, but we haven’t yet been able to do any of those things. The fact is, all the SETI efforts to date have only closely examined a couple thousand nearby stars, and we’re only just now learning which of those might have promising planets. . . . Even if we have been pointed in the right direction and listening at the right frequency, the probability of a message being beamed at us while we’re looking is certainly not very large. We’ve been playing the lottery using only a few tickets.”

Lee Billings is a science journalist specializing in astronomy, physics, planetary science, and spaceflight, and is a senior editor at Scientific American. He is the author of a critically acclaimed book, Five Billion Years of Solitude: the Search for Life Among the Stars, which in 2014 won a Science Communication Award from the American Institute of Physics. In addition to his work for Scientific American, Billings's writing has appeared in the New York Times, the Wall Street Journal, the Boston Globe, Wired, New Scientist, Popular Science, and many other publications. A dynamic public speaker, Billings has given invited talks for NASA's Jet Propulsion Laboratory and Google, and has served as M.C. for events held by National Geographic, the Breakthrough Prize Foundation, Pioneer Works, and various other organizations.

Billings joined Scientific American in 2014, and previously worked as a staff editor at SEED magazine. He holds a B.A. in journalism from the University of Minnesota.

More by Lee Billings