Skip to main content

Precision Farming Increases Crop Yields

Combining sensors and imaging of every plant with real-time data analytics improves farm outputs and reduces waste

As the world’s population grows, farmers will need to produce more and more food. Yet arable acreage cannot keep pace, and the looming food security threat could easily devolve into regional or even global instability. To adapt, large farms are increasingly exploiting precision farming to increase yields, reduce waste, and mitigate the economic and security risks that inevitably accompany agricultural uncertainty.

Traditional farming relies on managing entire fields—making decisions related to planting, harvesting, irrigating, and applying pesticides and fertilizer—based on regional conditions and historical data. Precision farming, by contrast, combines sensors, robots, GPS, mapping tools and data-analytics software to customize the care that plants receive without increasing labor. Stationary or robot-mounted sensors and camera-equipped drones wirelessly send images and data on individual plants—say, information about stem size, leaf shape and the moisture of the soil around a plant—to a computer, which looks for signs of health and stress. Farmers receive the feedback in real time and then deliver water, pesticide or fertilizer in calibrated doses to only the areas that need it. The technology can also help farmers decide when to plant and harvest crops.

As a result, precision farming can improve time management, reduce water and chemical use, and produce healthier crops and higher yields—all of which benefit farmers’ bottom lines and conserve resources while reducing chemical runoff.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Many start-ups are developing new software, sensors, aerial-based data and other tools for precision farming, as are large companies such as Monsanto, John Deere, Bayer, Dow and DuPont. The U.S. Department of Agriculture, NASA and the National Oceanic and Atmospheric Administration all support precision farming, and many colleges now offer course work on the topic.

In a related development, seed producers are applying technology to improve plant “phenotyping.” By following individual plants over time and analyzing which ones flourish in different conditions, companies can correlate the plants’ response to their environments with their genomics. That information, in turn, allows the companies to produce seed varieties that will thrive in specific soil and weather conditions. Advanced phenotyping may also help to generate crops with enhanced nutrition.

Growers are not universally embracing precision agriculture for various reasons. The up-front equipment costs—especially the expense of scaling the technology to large row-crop production systems—pose a barrier. Lack of broadband can be an obstacle in some places, although the USDA is trying to ameliorate that problem. Seasoned producers who are less computer-literate may be wary of the technology. And large systems will also be beyond the reach of many small farming operations in developing nations. But less expensive, simpler systems could potentially be applied. Salah Sukkarieh of the University of Sydney, for instance, has demonstrated a streamlined, low-cost monitoring system in Indonesia that relies on solar power and cell phones. For others, though, cost savings down the road may offset the financial concerns. And however reticent some veteran farmers may be to adopt new technology, the next generation of tech-savvy farmers are likely to warm to the approach.

The views, opinions and findings contained in this article are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

Geoffrey Ling, a retired U.S. Army colonel, is an expert in technology development and commercial transition. He is a professor of neurology at Johns Hopkins University and the Uniformed Services University of the Health Sciences and a partner of Ling and Associates.

More by Geoffrey Ling

Blake Bextine is program manager at the Biological Technologies Office of the Defense Advanced Research Projects Agency and was previously a professor of biology and assistant vice president for research and technology transfer at the University of Texas at Tyler.

More by Blake Bextine